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Let’s imagine that we introduce a new coin system. Instead of using pennies, nickels, dimes, and
quarters, let’s say we agree on using only 4-cent and 7-cent coins. One might point out the following
flaw of this new system: certain amounts cannot be exchanged, for example, 1, 2, or 5 cents. On the
other hand, this deficiency makes our new coin system more interesting than the old one, because
we can ask the question: “which amounts can be changed?” We will see shortly that there are only
finitely many integer amounts that cannot be exchanged using our new coin system. A natural
question, first tackled by Ferdinand Georg Frobenius and James Joseph Sylvester in the nineteenth
century, is: “what is the largest amount that cannot be exchanged?” As mathematicians, we like to
keep questions as general as possible, and so we ask: given coins of denominations a and b—positive
integers without a common factor—can you give a formula g(a, b) for the largest amount that cannot
be exchanged using the coins a and b? This problem and its generalization for coins a1, a2, . . . , an

is known as the Frobenius coin-exchange problem. To study the Frobenius number g(a, b), we use
the Euclidean Algorithm. For integers a and b that have no common factor, this algorithm yields
integers x and y such that ax + by = 1.

Problems

1. Find g(4, 7) and g(5, 11).

2. Find x and y such that 4x + 7y = 1. Find another x and y such that 4x + 7y = 1.

3. Find x and y such that 5x + 11y = 1. Find x and y such that 5x + 11y = 39.

4. Show that, if t is a given integer, we can always find integers x and y such that 4x + 7y = t.
Generalize to two coins a and b with no common factor.

5. Show that, if t is a given integer, we can always find integers x and y such that 4x + 7y = t and
0 ≤ x ≤ 6. Generalize to two coins a and b with no common factor.

6. Show that the following recipe for determining whether or not a given amount t can be changed
(using the coins 4 and 7) works: Given t, find integers x and y such that 4x+7y = t and 0 ≤ x ≤ 6.
Then t can be changed precisely if y ≥ 0. Generalize to two coins a and b with no common factor.

7. Use the previous argument to re-compute g(4, 7). Generalize your argument to compute g(a, b),
for any two coins a and b with no common factor.

8. Suppose t is an integer between 1 and ab − 1 that is not a multiple of a or b. Prove that if the
amount t can be changed then ab − t cannot be changed, and converseley, if t cannot be changed
then ab− t can be changed.

9. Prove that there are 1
2(a− 1)(b− 1) amounts that cannot be changed.

10. Think about why g(a, b) actually exists, if a and b have no common factor. More generally,
prove that the general Frobenius problem is well defined. That is, show that, given a1, a2, . . . , ad

with no common factor, every sufficiently large integer is representable (in terms of a1, a2, . . . , ad).



11. Next week we will study the counting sequence

rk = #
{
(m,n) ∈ Z2 : m,n ≥ 0, ma + nb = k

}
.

In words, rk counts the representations of k ∈ Z≥0 as nonnegative linear combinations of a and b.
The Frobenius problem asks for the largest among the rk’s that is 0. Prove that rk+ab = rk + 1.

A few remarks
The simple-looking formula for g(a, b) that you have found in () inspired a great deal of research
into formulas for the general Frobenius number g (a1, a2, . . . , ad), with limited success: While it is
safe to assume that the formula for g(a, b) has been known for more than a century, no analogous
formula exists for d ≥ 3. The case d = 3 is solved algorithmically, i.e., there are efficient algorithms
to compute g(a, b, c) [2, 4, 5], and in form of a semi-explicit formula [3, 7]. The Frobenius problem
for fixed d ≥ 4 has been proved to be computationally feasible [1, 6], but not even an efficient
practical algorithm for d = 4 is known. The formula in () is due to Sylvester and was published as
a math problem in the Educational Times more than a century ago [9]. For more on the Frobenius
problem, we refer to the research monograph [8]; it includes more than 400 references to articles
written about the Frobenius problem.

References

[1] Alexander Barvinok and Kevin Woods, Short rational generating functions for lattice point
problems, J. Amer. Math. Soc. 16 (2003), no. 4, 957–979 (electronic), arXiv:math.CO/0211146.

[2] J. Leslie Davison, On the linear Diophantine problem of Frobenius, J. Number Theory 48 (1994),
no. 3, 353–363.

[3] Graham Denham, Short generating functions for some semigroup algebras, Electron. J. Combin.
10 (2003), Research Paper 36, 7 pp. (electronic).

[4] Harold Greenberg, An algorithm for a linear Diophantine equation and a problem of Frobenius,
Numer. Math. 34 (1980), no. 4, 349–352.

[5] Jürgen Herzog, Generators and relations of abelian semigroups and semigroup rings.,
Manuscripta Math. 3 (1970), 175–193.

[6] Ravi Kannan, Lattice translates of a polytope and the Frobenius problem, Combinatorica 12
(1992), no. 2, 161–177.
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